Skip to main
University-wide Navigation

Articles are listed below in reverse chronological order (newest first).

2025

  1. Velmurugan, S., Pandey, V.K., Verma, N. et al. Cardiac remodelling, recognition memory deficits and accelerated ageing in a rat model of gestational diabetes. Diabetologia (2025). https://doi.org/10.1007/s00125-025-06421-7
  2. Leibold N, Kotiya D, Verma N, Despa F. Detection of Amylin-β-amyloid Hetero-Oligomers by Enzyme-Linked Immunosorbent Assay. Bio-Protocol. 2025; 15(3). https://doi.org/10.21769/BioProtoc.5179

2024

  1. Petersen ME, Flores-Aguilar L, Head E, Montoliu-Gaya L, Strydom A, Pape SE, Fortea J, Ashton NJ, Udeh-Momoh C, O'Bryant SE, German D, Despa F, Mapstone M, Zetterberg H. Blood biomarkers in Down syndrome: Facilitating Alzheimer's disease detection and monitoring. Alzheimer's Dement. 2024; 1-11. https://doi.org/10.1002/alz.14364
  2. Leibold N, Despa F. Neuroinflammation induced by amyloid-forming pancreatic amylin: Rationale for a mechanistic hypothesis. Biophysical Chemistry. 2024; 107252. https://doi.org/10.1016/j.bpc.2024.107252

2023

  1. Das S, Verma N, Goldstein LB, Despa F. Skin capillary amylin deposition resembles brain amylin vasculopathy in rats [published online ahead of print, 2023 Aug 10]. J Stroke Cerebrovasc Dis. 2023;32(9):107300. doi:10.1016/j.jstrokecerebrovasdis.2023.107300
  2. Velmurugan S, Liu T, Chen KC, Despa F, O'Rourke B, Despa S. Distinct Effects of Mitochondrial Na+/Ca2+ Exchanger Inhibition and Ca2+ Uniporter Activation on Ca2+ Sparks and Arrhythmogenesis in Diabetic Rats. J Am Heart Assoc. 2023;12(14):e029997. doi:10.1161/JAHA.123.029997
  3. Kotiya D, Leibold N, Verma N, Jicha GA, Goldstein LB, Despa F. Rapid, scalable assay of amylin-β amyloid co-aggregation in brain tissue and blood. J Biol Chem. 2023;299(5):104682. doi:10.1016/j.jbc.2023.104682
  4. Verma N, Despa F. The association between renal accumulation of pancreatic amyloid-forming amylin and renal hypoxia. Front Endocrinol (Lausanne). 2023;14:1104662. Published 2023 Feb 16. doi:10.3389/fendo.2023.1104662
  5. Despa F. Bloodborne Pancreatic Amylin, A Therapeutic Target for Alzheimer's Disease [published online ahead of print, 2023 Feb 17]. Curr Alzheimer Res. 2023;10.2174/1567205020666230217091540. doi:10.2174/1567205020666230217091540
  6. Leibold N, Bain JR, Despa F. Type-2 Diabetes, Pancreatic Amylin, and Neuronal Metabolic Remodeling in Alzheimer's Disease [published online ahead of print, 2023 Jan 28]. Mol Nutr Food Res. 2023;e2200405. doi:10.1002/mnfr.202200405
  7. Verma N, Velmurugan GV, Winford E, et al. Aβ efflux impairment and inflammation linked to cerebrovascular accumulation of amyloid-forming amylin secreted from pancreas. Commun Biol. 2023;6(1):2. Published 2023 Jan 3. doi:10.1038/s42003-022-04398-2

2022

  1. Swietach P, Despa S. Channelling protons out of the heart. J Physiol. 2022;600(11):2551-2552. doi:10.1113/JP283250

2021

  1. Verma N, Srodulski S, Velmurugan S, et al. Gestational diabetes triggers postpartum cardiac hypertrophy via activation of calcineurin/NFAT signaling. Sci Rep. 2021;11(1):20926. Published 2021 Oct 22. doi:10.1038/s41598-021-00422-3
  2. Despa F, Goldstein LB. Amylin Dyshomeostasis Hypothesis: Small Vessel-Type Ischemic Stroke in the Setting of Type-2 Diabetes. Stroke. 2021;52(6):e244-e249. doi:10.1161/STROKEAHA.121.034363
  3. Ly H, Verma N, Sharma S, et al. The association of circulating amylin with β-amyloid in familial Alzheimer's disease. Alzheimers Dement (N Y). 2021;7(1):e12130. Published 2021 Jan 20. doi:10.1002/trc2.12130

2020

  1. Despa F, Goldstein LB, Biessels GJ. Amylin as a Potential Link between Type 2 Diabetes and Alzheimer Disease. Ann Neurol. 2020;87(3):486. doi:10.1002/ana.25668
  2. Verma N, Liu M, Ly H, et al. Diabetic microcirculatory disturbances and pathologic erythropoiesis are provoked by deposition of amyloid-forming amylin in red blood cells and capillaries. Kidney Int. 2020;97(1):143-155. doi:10.1016/j.kint.2019.07.028

2019

  1. Verma N and Despa F, Contributing Factors to Diabetic Brain Injury and Cognitive Decline. Diabetes Metab J. 2019. 5:560-567. doi: 10.4093/dmj.2019.0153.
  2. Ly H, Verma N, Lashley T, et al. Amylin dyshomeostasis disrupts white matter structural integrity and modulates amyloid composition and pathology distribution in brains of patients with AD and AD rats. Alzheimers Dement. 2019.
  3. Ly H, Kotiya D, Despa F, Genetic Manipulation of Amylin Dramatically Accelerates Aging and Behavioral Changes in AD Rats. Alzheimers Dement. 2019
  4. Verma N, Liu M, Ly H, et al., Diabetic Microcirculatory Disturbances and Pathologic Erythropoiesis Provoked by Deposition of Amyloid-Forming Amylin in Red Blood Cells and Capillaries. Kidney Int. 2019.
  5. Ly H and Despa F, Diabetes-related amylin dyshomeostasis–a contributing factor to cerebrovascular pathology and dementia. J Lipid Atheroscelr. 2019. doi 10.12997/jla.2019.8.e9.
  6. Popescu I, Yin G, Velmurugan S, et al., Lower sarcoplasmic reticulum Ca2+ threshold for triggering afterdepolarizations in diabetic rat hearts. Heart Rhythm. 2019. doi: 10.1016/j.hrthm.2018.11.001.
  7. De Rossi P, Andrew RJ, Musial TF, et al., Aberrant accrual of BIN1 near Alzheimer's disease amyloid deposits in transgenic models. Brain Pathol. 2018. 71:65-74.

2018

  1. Ly H, Verma N, Wu F, et al., Amylin Dyshomeostasis – a Non-Alzheimer’s Disease Process Contributing to an Alzheimer’s Disease Phenotype. Alzheimers Dement. 2018.14(7): P696-697.
  2. Kotiya D, Ly H, Chen L, et al., CSF Amylin: Effect Modifier of the Aβ-AD Relationship. Alzheimers Dement. 2018. 14(7): P772-773.
  3. Despa F, Biessels GJ. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol. 2018. doi: 10.1038/s41574-018-0048-7.
  4. Stewart BD, Scott CE, McCoy TP, et al, Computational modeling of amylin-induced calcium dysregulation in rat ventricular cardiomyoctes. Cell Calcium. 2018. 71:65-74.
  5. Liu M, Hoskins A, Verma N, et al. Amylin and diabetic cardiomyopathy-amylin-induced sacrolemmal Ca2+ leak is independent of diabetic remodeling of myocardium. Biochim Biophys Acta. 2018. 1864(5 Pt B):1923-1930.

2017 

  1. Ly H, Verma N, Wu F, et al., Brain microvascular injury and white matter disease provoked by diabetes-associated hyperamylinemia. Ann Neurol. 2017. 82, 208-222.
  2. 1.    Ly H., Verma N., Wu F., et al. Diabetes-Associated Amylin Dyshomeostasis Provokes Brain White Matter Disease And Behavior Changes: An Animal Model. Alzheimers Dement. 2017. 13(7): P635.
  3. Van Steenbergen A, Balteau M, Ginion A,et al., Sodium-myoinositol cotransporter-1, SMIT1, mediates the production of reactive oxygen species induced by hyperglycemia in the heart. Sci Rep. 2017. 7:41166.

2016

  1. Liu M, Verma N, Peng X, et al., Hyperamylinemia increases IL-1β synthesis in the heart via peroxidative sarcolemmal injury. Diabetes. 2016. 65, 2772-83.
  2. Verma N, Ly H, Liu M, et al., Intraneuronal Amylin Deposition, Peroxidative Membrane Injury and Increased IL-1β Synthesis in Brains of Alzheimer's Disease Patients with Type-2 Diabetes and in Diabetic HIP Rats. J Alzheimers Dis. 2016. 5;53(1):259-72.
  3. Ilaiwy A, Liu M, Parry TL, et al., Human amylin proteotoxicity impairs protein biosynthesis, and alters major cellular signaling pathways in the heart, brain and liver of humanized diabetic rat model in vivo. Metabolomics. 2016. 12(5). pii: 95.

2015

  1. Ly H, Despa F. Hyperamylinemia as a risk factor for accelerated cognitive decline in diabetes. Expert Rev Proteomics. 2015.12(6):575-7
  2. Lambert R, Srodulski S, Peng X, et al., Intracellular Na+ Concentration ([Na+]i) Is Elevated in Diabetic Hearts Due to Enhanced Na+-Glucose Cotransport. J Am Heart Assoc. 2015. 27;4(9):e002183
  3. Guan H, Chow KM, Song E, et al., The Mitochondrial Peptidase Pitrilysin Degrades Islet Amyloid Polypeptide in Beta-Cells. PLoS One. 2015. 20;10(7):e0133263

2014 

  1. Srodulski S, Sharma S, Bachstetter AB, Brelsfoard JM, Pascual C, Xie XS, Saatman KE, Van Eldik LJ, Despa F. Neuroinflammation and neurologic deficits in diabetes linked to brain accumulation of amylin. Mol Neurodegener. 2014. 22;9:30.
  2. Despa S, Sharma S, Harris TR, Dong H, Li N, Chiamvimonvat N, Taegtmeyer H, Margulies KB, Hammock BD, Despa F. Cardioprotection by controlling hyperamylinemia in a "humanized" diabetic rat model. J Am Heart Assoc. 2014. 21;3(4).

2013 

  1. Despa F, Decarli C. Amylin: what might be its role in Alzheimer's disease and how could this affect therapy? Expert Rev Proteomics. 2013. 10(5):403-5.
  2. Erickson JR, Pereira L, Wang L, et al., Diabetic Hyperglycemia activates CaMKII and Arrhythmias by O linked Glycosylation. Nature. 2013. 502:372-6.
  3. Jackson K, Barisone GA, Diaz E, et al., Amylin deposition in the brain: a second amyloid in Alzheimer’s disease? Ann Neurol. 2013. 74: 517-26.

2012 

  1. Guglielmino K, Jackson K, Harris TR, et al., Pharmacological inhibition of soluble epoxide hydrolase provides cardioprotection in hyperglycemic rats. Am J Physiol Heart Circ Physiol. 2012. 303(7):H853-62.
  2. Despa S, Margulies K, Chen L, et al., Hyperamylinemia contributes to cardiac dysfunction in obesity and diabetes- a study in humans and rats, Circ. Res. 2012. 110: 598-608.